اثر تمرین شنا و ترانس سینامیک اسید بر میزان اضطراب، حافظه کاری و دانسیته دارک نورونی هیپوکامپ نوزادان موش صحرایی در مدل تشنج پریناتال

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زیست شناسی، دانشکده علوم، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

10.30495/varzesh.2021.1923356.1010

چکیده

مقدمه و هدف: تشنج مادری با القاء استرس اکسیداتیو در سیستم عصبی جنین، سبب آپوپتوز نورون‌های هیپوکامپ می‌گردد. این مطالعه به ارزیابی اثر تمرین شنا (ST) و تجویز ترانس سینامیک اسید (CIN) در دوران بارداری بر میزان اضطراب، آسیب سلولی و دانسیته نورون‌های آپوپتیک در هیپوکامپ نوزادان موش‌های صحرایی متعاقب تشنج پریناتال ناشی از پنتیلن­تترازول (PTZ) می­پردازد.
مواد و روش ها: در این تحقیق تجربی نوزادان حاصل از 25 سر موش صحرایی باردار نژاد ویستار که به صورت تصادفی در 5 گروه کنترل سالم، نرمال سالین (NS) + PTZ، PTZ+CIN،PTZ+ST  و PTZ+CIN+ST قرار گرفتند، استفاده شد. از روز 14 بارداری، حیوانات به مدت 5 روز متوالی در معرض تجویز مکررPTZ  (50 میلی گرم بر کیلوگرم، درون صفاقی) قرار گرفتند. در طول بارداری، تمرین شنا با شدت متوسط (20 دقیقه، 3 جلسه در هفته) و گاواژ سینامیک اسید (100 میلی‌گرم/کیلوگرم) روزانه و تا قبل از زایمان انجام شد. رفتارهای شبه اضطرابی و حافظه کاری به ترتیب با ماز صلیبی مرتفع و  ماز Y و دانیسته دارک نورونی هیپوکامپ نوزادان نر در 30 روزگی سنجیده شد.
یافته­ها: کاهش معنی‌دار رفتارهای تناوبی، افزایش میزان اضطراب با تراکم بالای دارک نورونی در نواحی مختلف هیپوکامپ در گروه PTZ+NS  نسبت به گروه کنترل دیده شد (05/0≥P) از طرفی، در گروه PTZ+CIN+ST در مقایسه با گروه PTZ+NS  کاهش میزان اضطراب، بهبود اختلال حافظه کاری و کاهش دانسیته دارک نورونی هیپوکامپ مشاهده شد (05/0≥P).
بحث و نتیجه گیری: به نظر می رسد تعامل تمرین شنا و تجویز ترانس سینامیک اسید سبب کاهش اختلالات شناختی- رفتاری و آسیب سلولی در هیپوکامپ نوزادان موش‌های صحرایی در معرض تشنجات مادری می‌گردد.

کلیدواژه‌ها


  1. Zimmern V, Korff C. Status Epilepticus in Children. J Clin Neurophysiol. 2020; 37 (5): 429- 433. [DOI:10.1097/WNP.0000000000000657]
  2. Gasparini S, Ferlazzo E, Sueri C, Cianci V, Ascoli M, Cavalli SM, et al. Hypertension, seizures, and epilepsy: a review on pathophysiology and management. Neurol Sci. 2019; 40(9):1775-1783. [DOI:10.1007/s10072-019-03913-4]
  3. Shellhaas RA. Seizure classification, etiology, and management. Handb Clin Neurol. 2019; 162: 347- 361. [DOI:10.1016/B978-0-444-64029-1.00017-5]
  4. Andoh M, Ikegaya Y, Koyama R. Microglia modulate the structure and function of the hippocampus after early-life seizures. J Pharmacol Sci. 2020; 144 (4): 212- 217. [DOI:10.1016/j.jphs.2020.09.003]
  5. Frank S, Tyson NA. A clinical approach to catamenial epilepsy: a review. Perm J. 2020; 24: 1- 3. [DOI:10.7812/TPP/19.145]
  6. Kashif T, Fathima N, Usman N, Qaseem A, Jayaraj JS. Women with epilepsy: anti-epileptic drugs and perinatal outcomes. Cureus. 2019; 11 (9): e5642. [DOI:10.7759/cureus.5642]
  7. Lu Y, Wang X, Feng J, Xie T, Si P, Wang W. Neuroprotective effect of astaxanthin on newborn rats exposed to prenatal maternal seizures. Brain Res Bull. 2019; 148:63- 69. [DOI:10.1016/j.brainresbull.2019.03.009]
  8. Jeong JH, Koo JH, Yook JS, Cho JY, Kang EB. Neuroprotective benefits of exercise and MitoQ on memory function, mitochondrial dynamics, oxidative stress, and Neuroinflammation in D-Galactose- induced aging rats. Brain Sci. 2021; 11 (2): 164. [DOI:10.3390/brainsci11020164]
  9. Bhatti GK, Reddy AP, Reddy PH, Bhatti JS. Lifestyle modifications and nutritional interventions in aging- associated cognitive decline and Alzheimer's disease. Front Aging Neurosci. 2020; 11: 369. [DOI:10.3389/fnagi.2019.00369]
  10. Toricelli M, Pereira AAR, Souza Abrao G, Malerba HN, Maia J, Buck HS, et al. Mechanisms of neuroplasticity and brain degeneration: strategies for protection during the aging process. Neural Regen Res. 2021; 16 (1): 58- 67. [DOI:10.4103/1673-5374.286952]
  11. Braidy N, Behzad S, Habtemariam S, Ahmed T, Daglia M, Nabavi SM, et al. Neuroprotective Effects of Citrus Fruit-Derived Flavonoids, Nobiletin and Tangeretin in Alzheimer's and Parkinson's Disease. CNS Neurol Disord Drug Targets. 2017; 16 (4): 387- 397. [DOI:10.2174/1871527316666170328113309]
  12. Ruwizhi N, Aderibigbe BA. Cinnamic acid derivatives and their biological efficacy. Int J Mol Sci. 2020; 21 (16): 5712. [DOI:10.3390/ijms21165712]
  13. Takao K, Toda K, Saito T, Sugita Y. Synthesis of amide and ester derivatives of Cinnamic acid and its analogs: evaluation of their free radical scavenging and monoamine oxidase and cholinesterase inhibitory activities. Chem Pharm Bull (Tokyo). 2017; 65 (11): 1020- 1027. [DOI:10.1248/cpb.c17-00416]
  14. Safarpour M, Edalatmanesh MA, Hosseini SE, Forouzanfar M. The effect of cinnamic acid on fetal hippocampus in pregnant rats. Comp Clin Pathol. 2020; 29: 945– 954. [DOI:10.1007/s00580-020-03118-8]
  15. Delaviz M, Edalatmanesh M A. The effect of trans- Cinnamic acid on prenatal seizures induced cognitive deficits. J Neyshabur Univ Med Sci. 2019; 7 (3): 104- 118. http://journal.nums.ac.ir/article-1-718-en.html
  16. Edalatmanesh MA, Khodabandeh H, Yazdani N, Rafiei S. Effect of Cinnamomum Zeylanicum extract on memory and hippocampal cell density in animal model of diabetes. J Arak Uni Med Sci. 2018; 21 (6): 56- 66. http://jams.arakmu.ac.ir/article-1-5738-en.html
  17. Jang Y, Lee B, Kim EK, Shim WS, Yang YD, Kim SM. Involuntary swimming exercise in pregnant rats disturbs ERK1/2 signaling in embryonic neurons through increased cortisol in the amniotic fluid. Biochem Biophys Res Commun. 2018; 495 (1): 1208- 1213. [DOI:10.1016/j.bbrc.2017.11.153]
  18. Moghadas M, Edalatmanesh MA, Robati R. Histopathological analysis from gallic acid administration on hippocampal cell density, depression, and anxiety related behaviors in a Trimethyltin intoxication model. Cell J. 2016; 17 (4): 659- 667. [DOI:10.22074/cellj.2016.3838]
  19. Yazdani M, Edalatmanesh M A, Rafiei S. Ameliorative effect of lithium chloride on working and spatial memory deficit in a PTZ-induced seizure model. Feyz J. 2017; 21 (2): 110- 117. http://feyz.kaums.ac.ir/article-1-3339-en.html
  20. Seghatoleslam M, Alipour F, Shafieian R, Hassanzadeh Z, Edalatmanesh MA, Sadeghnia HR, et al. The effects of Nigella sativa on neural damage after pentylenetetrazole induced seizures in rats. J Tradit Complement Med. 2015; 6 (3): 262- 8. [DOI:10.1016/j.jtcme.2015.06.003]
  21. Alachkar A, Ojha SK, Sadeq A, Adem A, Frank A, Stark H, et al. Experimental models for the discovery of novel anticonvulsant drugs: focus on Pentylenetetrazole- induced seizures and associated memory deficits. Curr Pharm. 2020; 26 (15): 1693- 1711. [DOI:10.2174/1381612826666200131105324]
  22. Rajabzadeh A, Bideskan AE, Fazel A, Sankian M, Rafatpanah H, Haghir H. The effect of PTZ-induced epileptic seizures on hippocampal expression of PSA-NCAM in offspring born to kindled rats. J Biomed Sci. 2012; 19 (1): 56. [DOI:10.1186/1423-0127-19-56]
  23. Yu X, Guan Q, Wang Y, Shen H, Zhai L, Lu X, et al. Anticonvulsant and anti-apoptosis effects of salvianolic acid B on pentylenetetrazole-kindled rats via AKT/CREB/BDNF signaling. Epilepsy Res. 2019; 154: 90- 96. [DOI:10.1016/j.eplepsyres.2019.05.007]
  24. Villalpando-Vargas F, Medina-Ceja L, Santerre A, Enciso-Madero EA. The anticonvulsant effect of sparteine on pentylenetetrazole-induced seizures in rats: a behavioral, electroencephalographic, morphological and molecular study. J Mol Histol. 2020; 51 (5): 503- 518. [DOI:10.1007/s10735-020-09899-0]
  25. Şahin S, Gürgen SG, Yazar U, İnce İ, Kamaşak T, Acar Arslan E, et al. Vitamin D protects against hippocampal apoptosis related with seizures induced by kainic acid and pentylenetetrazol in rats. Epilepsy Res. 2019; 149: 107- 116. [DOI:10.1016/j.eplepsyres.2018.12.005]
  26. Salim S. Oxidative Stress and the Central Nervous System. J Pharmacol Exp Ther. 2017; 360 (1): 201- 205. [DOI:10.1124/jpet.116.237503]
  27. Marcelino TB, Longoni A, Kudo KY, Stone V, Rech A, de Assis AM, et al. Evidences that maternal swimming exercise improves antioxidant defenses and induces mitochondrial biogenesis in the brain of young Wistar rats. Neuroscience. 2013; 246: 28- 39. [DOI:10.1016/j.neuroscience.2013.04.043]
  28. Wang D, Li B, Wu Y, Li B. The Effects of maternal atrazine exposure and swimming training on spatial learning memory and hippocampal morphology in offspring male rats via PSD95/NR2B signaling pathway. Cell Mol Neurobiol. 2019; 39 (7): 1003- 1015. [DOI:10.1007/s10571-019-00695-3]
  29. Sui SX, Williams LJ, Holloway-Kew KL, Hyde NK, Pasco JA. Skeletal muscle health and cognitive function: a narrative review. Int J Mol Sci 2020; 22 (1): 255. [DOI:10.3390/ijms22010255]
  30. Cherif A, Roelands B, Meeusen R, Chamari K. Effects of intermittent fasting, caloric restriction, and ramadan intermittent fasting on cognitive performance at rest and during exercise in adults. Sports Med. 2016; 46 (1): 35- 47. [DOI:10.1007/s40279-015-0408-6]
  31. Carter NS, Stamper BD, Elbarbry F, Nguyen V, Lopez S, Kawasaki Y, et al. Natural products that target the arginase in Leishmania parasites hold therapeutic promise. Microorganisms. 2021; 9 (2): 267. [DOI:10.3390/microorganisms9020267]
  32. Abazari MF, Nasiri N, Karizi SZ, Nejati F, Haghi-Aminjan H, Norouzi S, et al. An updated review of various medicinal applications of p-coumaric acid: From antioxidative and anti-inflammatory properties to effects on cell cycle and proliferation. Mini Rev Med Chem. 2021. [DOI:10.2174/1389557521666210114163024]
  33. Pontiki E, Peperidou A, Fotopoulos I, Hadjipavlou-Litina D. Cinnamate hybrids: a unique family of compounds with multiple biological activities. Curr Pharm Biotechnol. 2018; 19 (13): 1019- 1048. [DOI:10.2174/1389201019666181112102702]
  34. Chainoglou E, Siskos A, Pontiki E, Hadjipavlou-Litina D. Hybridization of curcumin analogues with Cinnamic acid derivatives as multi- target agents against Alzheimer's disease targets. Molecules. 2020; 25 (21): 4958. [DOI:10.3390/molecules25214958]