اثر تمرین شنا در دماهای مختلف همراه با مصرف دارچین بر حافظه احترازی، حافظه فضایی و توان هوازی موش های صحرایی دیابتی شده با استروپتوزتوسین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه تربیت بدنی و علوم ورزشی، دانشگاه کردستان، سنندج، ایران

2 مرکز تحقیقات تغذیه، دانشگاه علوم پزشکی شیراز، شیراز، ایران

3 گروه تربیت بدنی و علوم ورزشی، دانشگاه پیام نور، ایران

چکیده

مقدمه و هدف: دیابت نوعی بیماری متابولیکی است که علاوه بر آسیب­های جسمی موجب اختلالات شناختی نیز می­گردد، نقش فعالیت بدنی و گیاهان دارویی در بهبود حافظه و عملکرد جسمانی گزارش شده است، اما اثر تعاملی تمرین در دماهای مختلف همراه با مصرف دارچین هنوز شناخته نشده است. لذا مطالعه حاضر با هدف بررسی اثر تمرین شنا (S) در آب 5 درجه سانتی­گراد (S5C) و 35 درجه سانتی­گراد (S35C) همراه با مصرف دارچین (Cin) بر حافظه احترازی، حافظه فضایی و توان هوازی موش­های صحرایی مبتلا به دیابت انجام شد.
مواد و روش ها: در این مطالعه تجربی تعداد 48 سر موش صحرایی دیابتی (mg/kg 55 استروپتوزتوسین) به گروه­های (1) کنترل دیابتی (CD)، (2) S5C، (3) S5C+Cin، (4) S35C، (5) S35C+Cin و (6) Cin تقسیم شدند. تعداد 8 سر موش صحرایی جهت بررسی اثرات القای دیابت بر متغیر­های تحقیق در گروه کنترل سالم (HC) قرار گرفتند. تمرین شنا در آب با دمای 2 ± 5 درجه سانتی­گراد و 2 ± 36 درجه سانتی­گراد برای هشت هفته، 3 روز در هفته و 2-4 دقیقه در هر جلسه انجام شد. مصرف عصاره آبی دارچین mg/kg/day 200 حل در آب آشامیدنی بود. 48 ساعت پس از آخرین جلسه تمرین متغیرهای تحقیق ارزیابی گردید.
یافته ها: S5C و S35C موجب افزایش معنی­دار تاخیر در ورود به خانه تاریک (STL)، درصد تناوب­های غیر­تکراری (PA) و توانهوازی، کاهش زمان ماندن در خانه تاریک (TDC)و تعداد ورود به خانه تاریک (RDE) گردید (0/05≥P).
Cin موجب افزایش PA، توان هوازی، کاهش TDC گردید (0/05≥P). همچنین تعامل S5C+Cin و S35C+Cinموجب افزایشSTL، PA، کاهشTDCدر موش­های صحرایی مبتلا به دیابت گردید (0/05≥P).
بحث و نتیجه گیری: به نظر می­رسد تمرین شنا در دماهای مختلف و مصرف دارچین اثرات مطلوبی بر حافظه و یادگیری موش­های صحرایی دیابتی دارد، ولی با توجه به اینکه دارچین اثرات تمرین را تعدیل نمود، انجام مطالعات بیشتر در سطح سلولی مولکولی پیشنهاد می­گردد.

کلیدواژه‌ها


Hosseini SA, Hamzavi K, Safarzadeh H, Salehi O. Interactive effect of swimming training and fenugreek (Trigonella foenum graecum L.) extract on glycemic indices and lipid profile in diabetic rats. Arch Physiol Biochem. 2020; 5; 1- 5. [DOI:10.1080/13813455.2020.1826529] [PMID:33017260]
Stanciu GD, Bild V, Ababei DC, Rusu RN, Cobzaru A, Paduraru L, et al. Link between diabetes and Alzheimer’s disease due to the shared amyloid aggregation and deposition involving both neurodegenerative changes and neurovascular damages. J Clin Med. 2020; 9 (6): 1713. [DOI:10.3390/jcm9061713] [PMCID:PMC7357086]  
Rozanska O, Uruska A, Zozulinska-Ziolkiewicz D. Brain- derived neurotrophic factor and diabetes. Int J Mol Sci. 2020; 21 (3): 841. [DOI:10.3390/ijms21030841] [PMID:32012942]
Salehi OR, Hosseini SA, Farkhaie F, Farzanegi P, Zar A. The effect of moderate intensity endurance training with genistein on brain- derived neurotrophic factor and tumor necrosis factor- α in diabetic rats. J Nutr Fasting Heal. 2019; 7 (1): 44– 51. [DOI:10.22038/JNFH.2019.37231.1163]
Hosseini SA, Salehi OR, Farzanegi P, Farkhaie F, Darvishpour AR, Roozegar S. Interactive effects of endurance training and royal jelly consumption on motor balance and pain threshold in animal model of the Alzheimer disease. Arch Neurosci. 2020; 7 (2): e91857 [DOI:10.5812/ans.91857]
Hansen D, De Strijcker D, Calders P. Impact of endurance exercise training in the fasted state on muscle biochemistry and metabolism in healthy subjects: can these effects be of particular clinical benefit to type 2 diabetes mellitus and insulin-resistant patients?. Sport Med. 2017; 47 (3): 415– 28. [DOI:10.1007/s40279-016-0594-x] [PMID:27459862]
Borror A, Zieff G, Battaglini C, Stoner L. The effects of postprandial exercise on glucose control in individuals with type 2 diabetes: a systematic review. Sport Med. 2018; 48 (6): 1479- 91. [DOI:10.1007/s40279-018-0864-x] [PMID:29396781]
Negarandeh Z, Mohamadzadeh Salamat K, Hosseini SA, Etemad Z. The effect of endurance training with crocin consumption on IGF-1 and glycogen expression in rat hippocampus tissue of trimethyltin-treated model of Alzheimer’s disease. Asian J Sports Med. 2019; 10 (3): e92246. [DOI:10.5812/asjsm.92246]
Salehi OR, Hoseini A. The effects of endurance trainings on serum BDNF and insulin levels in streptozotocin-induced diabetic rats. Shefaye Khatam. 2017; 5 (2): 52– 61. http://shefayekhatam.ir/article-1-1378-en.html
Zhao RR, O’Sullivan AJ, Singh MAF. Exercise or physical activity and cognitive function in adults with type 2 diabetes, insulin resistance or impaired glucose tolerance: a systematic review. Eur Rev Aging Phys Act. 2018; 15 (1): 1. [DOI:10.1186/s11556-018-0190-1] [PMCID:PMC5776769]
Bukowiecki LJ. Energy balance and diabetes. The effects of cold exposure, exercise training, and diet composition on glucose tolerance and glucose metabolism in rat peripheral tissues. Can J Physiol Pharmacol. 1989; 67 (4): 382- 93. [DOI:10.1139/y89-062] [PMID:2667731]
Hanssen MJW, Hoeks J, Brans B, Van Der Lans AAJJ, Schaart G, Van Den Driessche JJ, et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat Med. 2015; 21 (8): 863. [DOI:10.1038/nm.3891] [PMID:26147760]
Anderson RA, Qin B, Canini F, Poulet L, Roussel AM. Cinnamon counteracts the negative effects of a high fat/high fructose diet on behavior, brain insulin signaling and Alzheimer-associated changes. PLoS One. 2013; 8 (12): e83243. [DOI:10.1371/journal.pone.0083243]  [PMCID:PMC3862724]
Edalatmanesh MA, Khodabandeh H, Yazdani N, Rafiei S. Effect of cinnamomum zeylanicum extract on memory and hippocampal cell density in animal model of diabetes. J Arak Univ Med Sci. 2018; 21 (6): 56– 66. http://jams.arakmu.ac.ir/article-1-5738-en.html
Momtaz S, Hassani S, Khan F, Ziaee M, Abdollahi M. Cinnamon, a promising prospect towards Alzheimer’s disease. Pharmacol Res. 2018; 130: 241– 58. [DOI:10.1016/j.phrs.2017.12.011]  [PMID:29258915]
Lubkowska A, Bryczkowska I, Gutowska I, Rotter I, Marczuk N, Baranowska-Bosiacka I, et al. The effects of swimming training in cold water on antioxidant enzyme activity and lipid peroxidation in erythrocytes of male and female aged rats. Int J Environ Res Public Health. 2019; 16 (4): 647. [DOI:10.3390/ijerph16040647] [PMCID:PMC6406484]
Bryczkowska I, Baranowska-Bosiacka I, Lubkowska A. Effect of repeated cold water swimming exercise on adaptive changes in body weight in older rats. Cent Eur J Sport Sci Med. 2017; 18 (2): 77- 87. [DOI:10.18276/cej.2017.2-08]
Ismail NS. Protective effects of aqueous extracts of cinnamon and ginger herbs against obesity and diabetes in obese diabetic rat. World J Dairy Food Sci. 2014; 9 (2): 145- 53. [DOI:10.5829/idosi.wjdfs.2014.9.2.1137]
Zavvari F, Karimzadeh F. A review on the behavioral tests for learning and memory assessments in rat. Neurosci J Shefaye Khatam. 2017; 5 (4): 110- 24. http://shefayekhatam.ir/article-1-1419-fa.html
Li FH, Sun L, Zhu M, Li T, Gao H-E, Wu D-S, et al. Beneficial alterations in body composition, physical performance, oxidative stress, inflammatory markers, and adipocytokines induced by long-term high-intensity interval training in an aged rat model. Exp Gerontol. 2018; 113: 150–62. [DOI:10.1016/j.exger.2018.10.006] [PMID:30308288]
Sun Y, Ma C, Sun H, Wang H, Peng W, Zhou Z, et al. Metabolism: A novel shared link between diabetes mellitus and Alzheimer’s disease.J Diabetes Res. 2020; 29: 4981814. [DOI:10.1155/2020/4981814] [PMID:32083135]
Ihsan M, Watson G, Abbiss CR. PGC-1α mediated muscle aerobic adaptations to exercise, heat and cold exposure. J Cell Mol Exer Physiol. 2014; 3(1):e7. http://www.cellularandmolecularexercisephysiology.com/index.php/CMEP/article/view/e7/
Tsai Y-J, Jhong Y-C, Ching S-H, Liao Y-C, Ching C-H, Chuang J-I. Cold exposure after exercise impedes the neuroprotective effects of exercise on thermoregulation and UCP4 expression in an MPTP- induced Parkinsonian mouse model. Front Neurosci. 2020; 14: 944. [DOI:10.3389/fnins.2020.573509] [PMCID:PMC7522410]
Yang L, Wu J, Hu Z, Gao F, Hu X. Effects of workload on human cognitive performance of exposure to extremely cold environment. Physiol Behav. 2020; 113296. [DOI:10.1016/j.physbeh.2020.113296]
Frydman-Marom A, Levin A, Farfara D, Benromano T, Scherzer-Attali R, Peled S, et al. Orally administrated cinnamon extract reduces β-amyloid oligomerization and corrects cognitive impairment in Alzheimer’s disease animal models. PLoS One. 2011; 6 (1): e16564. [DOI:10.1371/journal.pone.0016564] [PMCID:PMC3030596]
Rahmat M, Kazemi A, Kerendi H, Sheibak A. The effect of HIIT with supplementation of cinnamon on DPP4 concentration, insulin resistance, BMI and Vo2max in overweight boys. J Appl Exer Physiol. 2019; 15 (19): 119- 132. [DOI:10.22080/JAEP.2019.14871.1801]
Yulug B, Cankaya S. Translational perspective: is cinnamon a suitable agent for cognitive impairment and Alzheimer’s disease associated with brain trauma?. Neural Regen Res. 2019; 14 (8): 1372. [DOI:10.4103/1673-5374.253518] [PMCID:PMC6524496]